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What is	"Pattern	Recognition"?
The	term "Pattern	Recognition"	("Mustererkennung")	is used for

Pattern	recognition can be applied to all	kinds of signals,	e.g.
• images
• acoustic signals
• seismographic signals
• tomographic data etc.	

The	following section dealswith Pattern	Recognition	in	the narrowsense.

(see Duda	and Hart,	Pattern	Classification and Scene	Analysis,	Wiley 73)
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Methods for classifying unknown objects based on	feature vectors
(narrow sense	meaning of Pattern	Recognition)

Methods or analyzing signals and recognizing interesting patterns
(wide sense	meaning of Pattern	Recognition)
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Introductory Example:	Where is Wally?
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(c) Martin Handford, Walker Books
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(c) Martin Handford, Walker Books
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Basic	Terminology for Pattern	Recognition
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feature	extraction

feature	vector

object

classification	in
feature	space

object	class

K
N
!xT = x1  x2  ... xN( )
!yT = y1  y2  ... yN( )
!yi
(k )

Mk

gk
!x( )

classes ω1 ...	ωK

dimension of feature space

feature vector

prototype	 (feature vector with
known class membership)

i-th prototyp of class k

number of prototypes for class k

discriminant function for class k

Problem:	Determine such	that

∀!x∈ωk

∀
k≠ j
gk
!x( ) > gj

!x( )

gk
!x( )
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Example:	Animal	Footprints
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What features can be used to distinguish the 3	footprint classes?	

WolfBear Hare
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A	Feature	Space	for	Footprints
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w

h ω1 = wolf

ω2 = bear

ω3 = hare

1

1

∗
∗
∗
∗

••
•

•
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o o

o
o

∗
•

•

ω1

ω2

ω3

x1

x2

c =	„circumference“	=	2(w+h)
a   =	„area“	=	w×h
pa =	„print area“	=	card({ g(x,y) > 0})

x1 =	"squareness"	 	=	

x2 =	"solidness"	 	=

a
c2
pa
c
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Discriminant	Functions	for	Footprints
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Quadratic discriminant functions: Piecewise linear	discriminant functions:
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g1 = -9x1
2 + 10.8x1 - x2 - 2.84

g2 = x1 + 20x2
2 - 28x2 + 9.4

g3 = -x1 + 5.6x2
2 - 5.6x2 - 1

g1 = 1 if (x1-x2-0.2 > 0) ∧(x1+5x2-3 < 0)  else 0

g2 = 1 if (x1+5x2-3 > 0) ∧ (2x1+x2-1.5 > 0)  else 0

g3 = 1 if (2x1+x2-1.5 < 0) ∧ (x1-x2-0.2 < 0)  else 0
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Linear	Discriminant	Functions
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Linear	discriminant functions are attractive because they can be
• easily determined from prototypes
• easily analyzed
• easily evaluated

Basic	form	of linear	discriminant function:

x
x x

xx
x

xx x

o
o o

o
o

o

x1

x2

gk

o o boundary line:

For N=2 the discriminant
function is a	3D	plane

gk
!x( ) =

!wk( )T
!x +wk0

gk
!x( ) =

!wk( )T
!x +wk0

= 0
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Class	Average	
Minimal	Distance Classification
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• Represent prototypes by class averages

• Assign object to class with minimumdistance between object
and class average

x1

x2

x

x

x

x

x x

x

oo o

o

o

o

o

o

x

x

x

o

x

For a	2-class	problem,	the
minimal	distance criterion
always results in	a	linear	
discriminant function!

Class	average	minimal	distance	classification	may	not	separate	prototypes	even	if	
they	are	linearly	separable!	
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Nearest	Neighbour	Classification
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Assign object to class with nearest prototype

Piece-wise linear	
discriminant function

The	nearest neighbour criterion classifies all	prototypes correctly (except equal
prototypes of different	classes).	The	decision regions are not	necessarily coherent.
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Generalized Linear	Discriminant Functions
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x1

x2

Example:
Prototypes are not	linearly separable
A	quadratic discriminant function may work:

Transformation	of prototypes into higher-dimensional	feature space may
allow linear	discriminant functions.

Transformation	for the example:

Linear	discriminant function in	z-space:

Advantage:		 Linear	separation	algorithms	may	be	applied
Disadvantage: Dimensionality	of	 feature	space	is	drastically	increased

gk
!x( ) = a1x1 + a1x1 + b11 x1( )2 + b22 x2( )2 + b12x1x2 + c

with    !xT = x1  x2( )

z1 = x1  , z2 = x2  , z3 = x1( )2  , z4 = x2( )2  , z5 = x1x2  
gk
!z( ) = a1z1 + a2z2 + a3z3 + a4z4 + a5z5 + c
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Linear	Discriminant Functions for
2-Class	Problems

Normalize prototypes such	that

Discriminant function g can be expressed as

Prototypes of class ω2 are negated such	that
à correct classification of both classes

Solution	region in	weight space (if it exists)	is the space at the positive	side of all	
hyperplanes															.		Any weight vector in	this solution region gives a	correct
discriminant function.
Possible further constraints on	solution vector a:

b is "margin",	i.e.	minimal	distanceof a	correctly classified point from the hyperplanes	
defined by the prototypes.
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weight space

a0

a1

o

o

solution region for
weight vectors

!y (1)

!y (2)

g !x( ) =
!aT !x     with    !aT = a0  a1  ... aN( )

 !yT = 1 y1  y2  ... yN( )

!aT !y > 0

!aT !y = 0
!a

!a =1  ∧  ∀!y
!aT !y > b
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Perceptron Learning	Rule
A	solution vector a	can be determined iteratively byminimizinga	criterion
function by gradient descent.
Perceptron criterion function:

with B = {all	misclassified prototypes}

Basic	gradient descent algorithm:

Gradient:			

Step:

Weight vector is modified in	negative
gradient direction!
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iterations viewed in	weight space

Example (see illustration)	with:

a0

a1

o

o

k 0 1 2 3 4 5 6 7 8
0 2 0 2 0 2 4 2 4
1 -1 3 1 5 3 1 5 3

•

•

••

•

•

•

•

•

solution

Jp(
!a) = −

!aT !y( )
y∈B
∑

∇Jp(
!a) = −

!y( )
y∈B
∑

!ak+1 =
!ak + ρk

!y( )
y∈B
∑

!a

J(!a)

!y (1)

!y (2)

!y1 = −1  2( )T  ,  
!y2 = −1  1( )T  ,  ρ = 2

!ak

17.12.15 University of Hamburg, Dept. Informatics



Minimizing	the	Discriminant	Criterion
General	form	of gradient descent:

One can determine the optimal	ρkwhich achieves the minimal												at the
kth step by approximating with a	second-order	Taylor	series expansion:

where is the matrix of second derivatives	 evaluatedat .

Using the iteration rule:

The	minimizingρk is:

Newton´s algorithm is an	alternative:	
Choose whichminimizes in	the Taylor	series approximation.
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!ak+1 =
!ak − ρk∇J(!ak )      with     ∇J(!ak )

T =
∂J
∂a0

   ∂J
∂a1

 ...  ∂J
∂aN

$

%
&

'

(
)

J(!ak+1)
J(!a)

J(!ak ) ≈ J(
!ak+1)+∇

T J(!ak )(
!a − !ak )+ 1

2 (
!a − !ak )

T D(!ak )(
!a − !ak )

D(!ak ) ∂2J
ai∂aj

!ak

J(!ak+1) ≈ J(
!ak )− ρk ∇

T J(!ak )
2
+ 1
2 ρk( )2∇J(

!ak )
T D(!ak )∇J(

!ak )

ρk =
∇T J(!ak )

2

∇J(!ak )
T D(!ak )∇J(

!ak )

!ak+1 J(!a)
!ak+1 = ak −D

−1∇J ak( )
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Quadratic	Criterion	Function

Quadratic criterion function:
with B = {all	sampleswhere }

Problems:	
• slow convergence close to boundaries
• dominated by long sample	vectors

Normalized quadratic criterion function:

with B = {all	sampleswhere }

Gradient:

Iteration	rule:
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Jq
!a( ) =

!aT !y( )
2

y∈B
∑ !aT !y ≤ 0

!aT !y ≈ 0
!y

Jr
!a( ) = 1

2

!aT !y − b( )
2

!y 2
y∈B
∑ !aT !y < b

∇Jr
!a( ) =

!aT !y − b
!y 2

y∈B
∑ !y

!ak+1 =
!ak + ρk

b− !aT !y
!y 2

y∈B
∑ !y
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Relaxation	Rule
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If corrections based on	the normalized quadratic criterion are performed for
each single sample,	one gets the "relaxation rule":	

!ak+1 =
!ak + ρ

b− !ak
T !y (k )
!y (k )

2
!y (k ) where

Distance from to hyperplane	 is:
b− !ak

T !y (k )
!y (k )

2

For ρ = 1,	the iteration rule calls for moving directly to the hyperplane
à"relaxation"	of tension in	inequality

Typical values: 0 < ρ < 2
ρ < 1  "underrelaxation"
ρ > 1 "overrelaxation“ a0

a1

o

•

∀
k
  !ak

T !y (k ) < b

!ak
T !y (k ) = b

!ak

!ak
T !y (k ) = b

!ak

!y (k )

!ak
T !y (k ) < b

!ak
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Minimum	Squared	Error
New	criterion function for all	samples:
Find				such	that with bi =	some positive	constant

In	matrix notation:			 with and

In	general,	M >> N and Y-1 does not	exist,	hence is no solution.
Classical solution technique:	Minimize squarederror criterion:	

Closed-form	solution by setting the gradient equal to 0.
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if (YTY)-1YT is nonsingular
pseudoinverse	of Y

!a !aT !yi = bi

Y !a =
!
b Y =

!y1
T

!y2
T

"
!yM

T

!

"

#
#
#
#
#

$

%

&
&
&
&
&

!yi =

yi1
yi2
"
yinN

!

"

#
#
#
#
#

$

%

&
&
&
&
&

!a =Y −1
!
b

∇Js
!a( ) = 2Y T Y !a −

!
b( ) = 0  ⇒  !a = Y TY( )

−1
Y T
!
b

Js
!a( ) = Y !a −

!
b

2
=

!aT !yi − bi( )
2

∑
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Ho-Kashyap	Procedure
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The	MSE	solution does not	necessarily provide a	separating hyperplane	
if the classes are linearly separable,	because is chosen arbitrarily.

Ho-Kashyap algorithm searches for and such	that by minimizing Js
w.r.t.				and :

1.	Iterate over by choosing
2.	Iterate over by choosing :

0 < ρ < 1
with error vector

positive	part of

Ho-Kashyap iteration over generates sequence of margin vectors which
- minimizes squared error criterion
- gives only positive	margins

For linearly separable classes and 0 < ρ < 1,	the Ho-Kashyap algorithmwill	converge
in	a	finite	numberof steps.

!a = Y TY( )
−1
Y T
!
b !

b
!
b!a Y !a =

!
b >
!
0!

b!a
!a !ak = Y TY( )

−1
Y T
!
bk!

b
!
b1 >
!
0
!
bk+1 = bk + 2ρ

!ek
+

!ek =Y
!ak −
!
bk!ek

+ = 1
2
!ek +
!ek( ) !ek

!
b

!
b

!
b >
!
0
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Discrimination	with	
Potential	Functions

Idea:		Electrostaticpotential	centered at each prototype	may sum up
to a	useful discriminant function

20

IP1	– Lecture 15:	Pattern	Recognition

xo o ox x xo

Example:	
potential	function

discriminant function

"charges"	qi may be adjusted in	
learning procedure

K !x,  !xi( ) = 1
!x − !xi

2

g !x( ) = qiK
!x,  !xi( )

i
∑
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Construction	of	Discriminant	Functions
Based	on	Potential	Functions
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Different	choices for potential	functions are possible,	for example:

K(!x,  !xk ) =
σ 2

σ 2 +
!x − !xk

2

K(!x,  !xk ) = e
−
1
2σ 2

!x−!xk
2

Potential	functionsmust	be
tuned to provide the right
kind of interpolation between
samples!

!g (!x) =
g(!x)+K(!x,  !xk ) if  !xk  is of class 1 and g(!xk ) ≤ 0
g(!x)−K(!x,  !xk ) if  !xk  is of class 2 and g(!xk ) ≥ 0

g(!x) otherwise

%

&
''

(
'
'

Iterative	construction:
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